Scaling Up

Let’s turn our attention from hadrosaur skin to ankylosaur skin, a topic which has received surprisingly less attention in the published literature than I would have thought. I should qualify that statement, however, by saying that by ‘ankylosaur skin’ I mean ankylosaur skin impressions, because ankylosaur dermal elements are well known and the focus of many a paper – I refer of course to osteoderms, which form within the dermis of the skin and which give ankylosaurs their spiky and armoured appearance.

For a couple of years now I’ve been keeping notes about occurrences of skin impressions in ankylosaurs, which eventually lead to a paper by myself, Mike Burns, Phil Bell, and Phil Currie. We reviewed the morphology of scale patterns in the few specimens that preserve skin, and found that there were some intriguing differences in scalation between different ankylosaurs.

The holotype of Scolosaurus cutleri, NHMUK R5161, has the best preserved integument for any North American ankylosaur, and has loads  of scale impressions lying overtop of the in situ osteoderms. In Scolosaurus, the scales form rosettes around the osteoderms. The largest scales are generally found closest to the osteoderms, but some large scales are scattered in between the osteoderms as well. Underneath the scales, small ossicles (little osteoderms less than 1 cm in diameter, but usually only 2-4 mm wide) fill the spaces between the larger osteoderms.

 

Scolosaurus is hard to photograph well, sorry!

In contrast, a very unusual specimen (ROM 813) has a completely different morphology. This specimen includes unusual long, rectangular osteoderms that aren’t present in NHMUK R5161. The scales are on average much smaller, don’t form much of a rosette pattern around any of the osteoderms, and are more uniform in size overall. ROM 813 is a little bit difficult to interpret because it is partially disarticulated (which is also intriguing given that such large portions of the integument are intact), but our best guess for the preserved portions is shown here.

Another super cool thing about ROM 813 is that it preserves the epidermal covering of an osteoderm, and it is the only example of this in an ankylosaur that I know about. In the photo below, the smooth side of the osteoderm is the epidermal scale, and the rough side of the osteoderm is the true bony part of the osteoderm.

Moving over to Mongolia, a specimen referred to Tarchiagigantea lacks the small pavement of ossicles seen in the Albertan ankylosaurs, and the epidermal scales are huge and more rectangular. In the portion of the integument preserved, osteoderms are separated by only one row of scales.

There’s enough overlapping material between these specimens to allow us to compare scale patterns among different ankylosaurs, and the differences support the hypothesis that these are different taxa. Unfortunately, right now we can’t assign ROM 813 to any known ankylosaurid taxon from Alberta – this could represent the postcrania of Euoplocephalus tutus, or Dyoplosaurus acutosquameus, or (less likely) a new taxon of ankylosaurid from the Dinosaur Park Formation. I think it’s safe to say that the differences between Scolosaurus and ROM 813 represent true taxonomic differences, a finding that is in line with previous work by Phil Bell on scalation differences between Saurolophus angustirostris and Saurolophus osborni.

Illustrations by Lida Xing and via PLOS ONE.

One more comment about ankylosaur skin: In 2010 I had the opportunity to study the holotype of Liaoningosaurus paradoxus, and very interesting little ankylosaur from the Liaoning Formation of China. The original authors described Liaoningosaurus as possessing a ventral plastron (bony shield, like that found in turtles), which would have been a highly unusual anatomical feature given that no other ankylosaurs possess a plastron. Having looked at this specimen, I think a better interpretation for the plastron is that this is a segment of skin impressions from the belly region – there didn’t seem to be any bony texture around the edges of this area, and the pattern is more consistent with scales than any osteoderms in other ankylosaurs.

Belly scales for Liaoningosaurus. The scale bar is in millimetres.

Papers!

Arbour VM, Burns ME, Bell PR, Currie PJ. 2014. Epidermal and dermal integumentary structures of ankylosaurian dinosaurs. Journal of Morphology 275:39-50.

Arbour VM, Lech-Hernes NL, Guldberg TE, Hurum JH, Currie PJ. 2013. An ankylosaurid dinosaur from Mongolia with in situ armour and keratinous scale impressions. Acta Palaeontologica Polonica 58:55-64. Many thanks to Dr. Hurum for inviting me to help describe this specimen!

Bell PR. 2012. Standardized terminology and potential taxonomic utility for hadrosaurid skin impressions: a case study for Saurolophus from Canada and Mongolia. PLOS ONE 7:e31295.

Xu X, Wang X-L, You H-L. 2001. A juvenile ankylosaur from China. Naturwissenschaften 88:297-300.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s